Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Time-resolved nonlinear optical-holographic techniques for investigation of non-equilibrium carrier dynamics in semiconductors

Identifieur interne : 002236 ( Main/Repository ); précédent : 002235; suivant : 002237

Time-resolved nonlinear optical-holographic techniques for investigation of non-equilibrium carrier dynamics in semiconductors

Auteurs : RBID : Pascal:11-0415920

Descripteurs français

English descriptors

Abstract

A novel metrological approach bridges a dynamic holography and photoelectrical phenomena in semiconductors for monitoring the temporal and spatial non-equilibrium carrier dynamics. Light interference pattern of two coherent picosecond pulses was used to inject spatially modulated carrier pattern, modulate temporally the complex refractive index of a semiconductor, and thus create a light-induced transient diffraction grating (LITG). Recording of a thin grating at interband carrier generation with subsequent probing of spatial and temporal carrier dynamics by a delayed probe beam allowed investigation of various recombination mechanisms, covering linear, surface-limited, and nonlinear (bimolecular and Auger). Decay of LITG at its various spacings provided either the bipolar carrier mobility or minority one in heavily doped layers, diffusivity of degenerate plasma, as well revealed impact of carrier localization and band gap renormalization on carrier transport. Diffraction on thick Bragg gratings, recorded via deep impurity-assisted carrier generation revealed simultaneous index modulation by free-carriers, space-charge electric field, and recharged deep traps, thus enabling access to photoelectric parameters of the compensating centers. Grating decay in multiple quantum well structures (MQWS) provided carrier and spin relaxation rates, electron mobility, in-plane and cross-well transport. Spatial and temporal carrier dynamics in a wide excitation and temperature range is reviewed in a variety of III-nitride compounds (GaN, InGaN, AlGaN), GaAs, CdTe, InP, SiC, diamond films, and MQWS.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0415920

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Time-resolved nonlinear optical-holographic techniques for investigation of non-equilibrium carrier dynamics in semiconductors</title>
<author>
<name sortKey="Jarasiunas, K Stutis" uniqKey="Jarasiunas K">K Stutis Jarasiunas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Sauletekio Ave. 9, Bld.3</s1>
<s2>Vilnius, 10222</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>Vilnius, 10222</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0415920</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0415920 INIST</idno>
<idno type="RBID">Pascal:11-0415920</idno>
<idno type="wicri:Area/Main/Corpus">002922</idno>
<idno type="wicri:Area/Main/Repository">002236</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium Nitrides</term>
<term>Binary compounds</term>
<term>Bragg gratings</term>
<term>Cadmium Tellurides</term>
<term>Carrier mobility</term>
<term>Diamonds</term>
<term>Diffraction gratings</term>
<term>Electric fields</term>
<term>Electron mobility</term>
<term>Free carrier</term>
<term>Gallium Nitrides</term>
<term>Holography</term>
<term>II-VI semiconductors</term>
<term>III-V semiconductors</term>
<term>Indium Phosphides</term>
<term>Light interference</term>
<term>Multiple quantum well</term>
<term>Nitrides</term>
<term>Optical materials</term>
<term>Photoinduced effect</term>
<term>Plasma</term>
<term>Quantum wells</term>
<term>Refractive index</term>
<term>Silicon carbide</term>
<term>Space charge</term>
<term>Time resolution</term>
<term>Transient gratings</term>
<term>Ultrafast process</term>
<term>ps range</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Interférence lumineuse</term>
<term>Effet photoinduit</term>
<term>Plasma</term>
<term>Charge espace</term>
<term>Champ électrique</term>
<term>Réseau diffraction</term>
<term>Réseau Bragg</term>
<term>Holographie</term>
<term>Résolution temporelle</term>
<term>Domaine temps ps</term>
<term>Indice réfraction</term>
<term>Mobilité porteur charge</term>
<term>Mobilité électron</term>
<term>Puits quantique multiple</term>
<term>Puits quantique</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Gallium Nitrure</term>
<term>Aluminium Nitrure</term>
<term>Cadmium Tellurure</term>
<term>Indium Phosphure</term>
<term>Carbure de silicium</term>
<term>Diamant</term>
<term>Porteur libre</term>
<term>Nitrure</term>
<term>Matériau optique</term>
<term>Processus ultrarapide</term>
<term>Semiconducteur II-VI</term>
<term>GaAs</term>
<term>CdTe</term>
<term>SiC</term>
<term>Ga N</term>
<term>Al Ga N</term>
<term>As Ga</term>
<term>Cd Te</term>
<term>GaN</term>
<term>AlGaN</term>
<term>InP</term>
<term>0130C</term>
<term>4270</term>
<term>In P</term>
<term>4279D</term>
<term>Réseau transitoire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A novel metrological approach bridges a dynamic holography and photoelectrical phenomena in semiconductors for monitoring the temporal and spatial non-equilibrium carrier dynamics. Light interference pattern of two coherent picosecond pulses was used to inject spatially modulated carrier pattern, modulate temporally the complex refractive index of a semiconductor, and thus create a light-induced transient diffraction grating (LITG). Recording of a thin grating at interband carrier generation with subsequent probing of spatial and temporal carrier dynamics by a delayed probe beam allowed investigation of various recombination mechanisms, covering linear, surface-limited, and nonlinear (bimolecular and Auger). Decay of LITG at its various spacings provided either the bipolar carrier mobility or minority one in heavily doped layers, diffusivity of degenerate plasma, as well revealed impact of carrier localization and band gap renormalization on carrier transport. Diffraction on thick Bragg gratings, recorded via deep impurity-assisted carrier generation revealed simultaneous index modulation by free-carriers, space-charge electric field, and recharged deep traps, thus enabling access to photoelectric parameters of the compensating centers. Grating decay in multiple quantum well structures (MQWS) provided carrier and spin relaxation rates, electron mobility, in-plane and cross-well transport. Spatial and temporal carrier dynamics in a wide excitation and temperature range is reviewed in a variety of III-nitride compounds (GaN, InGaN, AlGaN), GaAs, CdTe, InP, SiC, diamond films, and MQWS.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7937</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Time-resolved nonlinear optical-holographic techniques for investigation of non-equilibrium carrier dynamics in semiconductors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Ultrafast phenomena in semiconductors and nanostructure materials XV : 23-26 January 2011, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JARASIUNAS (Kęstutis)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TSEN (Kong Thon)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Sauletekio Ave. 9, Bld.3</s1>
<s2>Vilnius, 10222</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>79371W.1-79371W.17</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8474-1</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174740410370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0415920</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A novel metrological approach bridges a dynamic holography and photoelectrical phenomena in semiconductors for monitoring the temporal and spatial non-equilibrium carrier dynamics. Light interference pattern of two coherent picosecond pulses was used to inject spatially modulated carrier pattern, modulate temporally the complex refractive index of a semiconductor, and thus create a light-induced transient diffraction grating (LITG). Recording of a thin grating at interband carrier generation with subsequent probing of spatial and temporal carrier dynamics by a delayed probe beam allowed investigation of various recombination mechanisms, covering linear, surface-limited, and nonlinear (bimolecular and Auger). Decay of LITG at its various spacings provided either the bipolar carrier mobility or minority one in heavily doped layers, diffusivity of degenerate plasma, as well revealed impact of carrier localization and band gap renormalization on carrier transport. Diffraction on thick Bragg gratings, recorded via deep impurity-assisted carrier generation revealed simultaneous index modulation by free-carriers, space-charge electric field, and recharged deep traps, thus enabling access to photoelectric parameters of the compensating centers. Grating decay in multiple quantum well structures (MQWS) provided carrier and spin relaxation rates, electron mobility, in-plane and cross-well transport. Spatial and temporal carrier dynamics in a wide excitation and temperature range is reviewed in a variety of III-nitride compounds (GaN, InGaN, AlGaN), GaAs, CdTe, InP, SiC, diamond films, and MQWS.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B79D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Interférence lumineuse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Light interference</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Effet photoinduit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photoinduced effect</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Efecto fotoinducido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Plasma</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Plasma</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Charge espace</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Space charge</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Champ électrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electric fields</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Réseau diffraction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Diffraction gratings</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réseau Bragg</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Bragg gratings</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Holographie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Holography</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Résolution temporelle</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Time resolution</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Domaine temps ps</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>ps range</s0>
<s5>42</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>43</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>43</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>44</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>44</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>45</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>45</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>48</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>51</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>51</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Gallium Nitrure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium Nitrides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Aluminium Nitrure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Aluminium Nitrides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Cadmium Tellurure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Cadmium Tellurides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Carbure de silicium</s0>
<s5>56</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Silicon carbide</s0>
<s5>56</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Silicio carburo</s0>
<s5>56</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Diamant</s0>
<s2>NK</s2>
<s5>57</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Diamonds</s0>
<s2>NK</s2>
<s5>57</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>61</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>61</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>61</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Nitrure</s0>
<s2>NA</s2>
<s5>62</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Nitrides</s0>
<s2>NA</s2>
<s5>62</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>63</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>63</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Processus ultrarapide</s0>
<s5>64</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Ultrafast process</s0>
<s5>64</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Proceso ultrarrápido</s0>
<s5>64</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Semiconducteur II-VI</s0>
<s5>65</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>II-VI semiconductors</s0>
<s5>65</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>CdTe</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>SiC</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Ga N</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Al Ga N</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>Cd Te</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>AlGaN</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="38" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="39" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="40" i2="3" l="FRE">
<s0>4270</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="41" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fC03 i1="42" i2="3" l="FRE">
<s0>4279D</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="43" i2="3" l="FRE">
<s0>Réseau transitoire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="43" i2="3" l="ENG">
<s0>Transient gratings</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>283</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Ultrafast phenomena in semiconductors and nanostructure materials</s1>
<s2>15</s2>
<s3>San Francisco CA USA</s3>
<s4>2011</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002236 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002236 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0415920
   |texte=   Time-resolved nonlinear optical-holographic techniques for investigation of non-equilibrium carrier dynamics in semiconductors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024